Extensions 1→N→G→Q→1 with N=C2×C14 and Q=C22

Direct product G=N×Q with N=C2×C14 and Q=C22
dρLabelID
C23×C14112C2^3xC14112,43

Semidirect products G=N:Q with N=C2×C14 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C14)⋊C22 = D4×D7φ: C22/C1C22 ⊆ Aut C2×C14284+(C2xC14):C2^2112,31
(C2×C14)⋊2C22 = D4×C14φ: C22/C2C2 ⊆ Aut C2×C1456(C2xC14):2C2^2112,38
(C2×C14)⋊3C22 = C2×C7⋊D4φ: C22/C2C2 ⊆ Aut C2×C1456(C2xC14):3C2^2112,36
(C2×C14)⋊4C22 = C23×D7φ: C22/C2C2 ⊆ Aut C2×C1456(C2xC14):4C2^2112,42

Non-split extensions G=N.Q with N=C2×C14 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C14).C22 = D42D7φ: C22/C1C22 ⊆ Aut C2×C14564-(C2xC14).C2^2112,32
(C2×C14).2C22 = C7×C4○D4φ: C22/C2C2 ⊆ Aut C2×C14562(C2xC14).2C2^2112,40
(C2×C14).3C22 = C4×Dic7φ: C22/C2C2 ⊆ Aut C2×C14112(C2xC14).3C2^2112,10
(C2×C14).4C22 = Dic7⋊C4φ: C22/C2C2 ⊆ Aut C2×C14112(C2xC14).4C2^2112,11
(C2×C14).5C22 = C4⋊Dic7φ: C22/C2C2 ⊆ Aut C2×C14112(C2xC14).5C2^2112,12
(C2×C14).6C22 = D14⋊C4φ: C22/C2C2 ⊆ Aut C2×C1456(C2xC14).6C2^2112,13
(C2×C14).7C22 = C23.D7φ: C22/C2C2 ⊆ Aut C2×C1456(C2xC14).7C2^2112,18
(C2×C14).8C22 = C2×Dic14φ: C22/C2C2 ⊆ Aut C2×C14112(C2xC14).8C2^2112,27
(C2×C14).9C22 = C2×C4×D7φ: C22/C2C2 ⊆ Aut C2×C1456(C2xC14).9C2^2112,28
(C2×C14).10C22 = C2×D28φ: C22/C2C2 ⊆ Aut C2×C1456(C2xC14).10C2^2112,29
(C2×C14).11C22 = C4○D28φ: C22/C2C2 ⊆ Aut C2×C14562(C2xC14).11C2^2112,30
(C2×C14).12C22 = C22×Dic7φ: C22/C2C2 ⊆ Aut C2×C14112(C2xC14).12C2^2112,35
(C2×C14).13C22 = C7×C22⋊C4central extension (φ=1)56(C2xC14).13C2^2112,20
(C2×C14).14C22 = C7×C4⋊C4central extension (φ=1)112(C2xC14).14C2^2112,21
(C2×C14).15C22 = Q8×C14central extension (φ=1)112(C2xC14).15C2^2112,39

׿
×
𝔽